
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 16, No. 6, November-December 1993

Discrete-Time Model Reduction in Limited Frequency Ranges

Lucas G. Horta,* Jer-Nan Juang,t and Richard W. LongmanJ
NASA Langley Research Center, Hampton, Virginia 23665

A mathematical formulation for model reduction of discrete-time systems such that the reduced-order model
represents the system in a particular frequency range is discussed. The algorithm transforms the full-order
system into balanced coordinates using frequency-weighted discrete controllability and observability grammi-
ans. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency
range of interest. Minimization of the criterion is accomplished without need for numerical optimization.
Balancing requires the computation of discrete frequency-weighted grammians. Closed-form solutions for the
computation of frequency-weighted grammians are developed. Numerical examples are discussed to demon-
strate the algorithm.

Introduction

W HEN designing controllers for large dimensional sys-
tems, the first problem one must face is the model

reduction. There have been numerous papers dealing with the
problem. They all consider two major approaches. The first
approach uses optimality conditions in conjunction with opti-
mization algorithms to perform an exhaustive search for an
optimal reduced-order model. The second approach uses spe-
cial coordinate transformations to transform the system into a
so-called balanced form. In this form the states are easily
arranged in order of importance. The ordering is based on the
state contribution to either the pulse response for the deter-
ministic formulation or the response to white noise for the
stochastic counterpart. The second approach yields a suboptl-
mal solution, but with a significant reduction in computa-
tional time. The work in Ref. 1, which addresses the first
approach, presents the initial formulation of the optimal
model reduction problem, including necessary and sufficient
conditions for an optimal solution to exist. This work was
later extended and refined and a comparison of the various
approaches was presented.2 Solutions in both cases are opti-
mal in the sense that they minimize the response error between
the reduced- and full-order model. Because of the nonlinear
optimization procedure, solutions using these approaches tend
to be computationally intensive. A suboptimal solution to the
model reduction problem is initially discussed in Ref. 3. A
heuristic argument is given to justify truncation of certain
states, but later a formal connection with the optimal reduc-
tion procedure is clearly established.4 A similar procedure,
known as component cost analysis, is presented in Ref. 5, and
the connection with Ref. 4 is pointed out in Ref. 6. All of the
suboptimal approaches rely on special transformations to
minimize the coupling between states that are to be truncated
and those to be retained. Near-optimum conditions for model
reduction in balanced and modal coordinates are presented in
Ref. 7. At the same time, a formulation for model reduction
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in limited time and frequency ranges was proposed in Ref. 8.
The work discussed in this paper is an extension of the subop-
timal model reduction solution for particular frequency
ranges8 to discrete time systems. The objective is to deal with
discrete-time systems directly without need for conversion to
continuous time before model reduction is performed.

The outline of the paper is as follows. First, the truncation
error criterion is defined in terms of pulse responses. Second,
the error criterion is transformed to frequency domain and
expressed in terms of the controllability grammian. Third, a
brief review is presented on how to use balanced coordinates
for model reduction. Fourth, closed-form solutions for the
discrete frequency-weighted grammians are obtained for use
in balancing the system according to frequency. Finally, a
numerical example is discussed to illustrate the algorithm.

Problem Statement
The model reduction problem addresses the question of how

to reduce the number of states from the equations of motion
by eliminating those contributing least to the total system
response. The system equations for an nth order discrete time
system are given by

(1)

or by rearranging the order of the states one can write Eq. (1)
in partition form

/*" ~\ r ~i f(xr(k + irt = \Arr AMxr(
(xt(k + l)} lAtr Att\(xt(

(2)

where subscript r refers to states to be retained and t to states
to be truncated. The objective function defined in terms of the
error in the system response due to truncation is given by

P-\
) -yr(r)] = (3)

The truncation error is accumulated over/? sample points. The
response of the system in Eq. (1) is easily propagated from
time k = 0 to any given sample time using

x(k)=Akx(0) + £ A lBu(k - i - 1)
» = o

(4)

To examine the response of two systems (the full- and re-
duced-order system), one can compare their corresponding
pulse responses. Assuming the system is initially at rest, a
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pulse is applied to each of the inputs one at a time. From Eq.
(4) the response due to a pulse at the /th input is

where Z>/ is the /th column of the B matrix. Collecting all h\k)
for q inputs, one can write the matrix of pulse responses as

= [hl(k)h\k) (6)

Since the states are partitioned as in Eq. (2), the output pulse
response matrix for k > 0 is given by

Y(k)=Yr(k)+Yt(k)

= [Cr Ct]X(k)

= CrXr(k) + CtXt(k) (7)

The error performance measure in Eq. (3), based on pulse
responses, can now be written using Eq. (7)

/=£ tr{F,(T)F,r(T)l (8)

where tr{ ) refers to the trace of the matrix. Using Eq. (7) in
Eq. (8) and trace properties, one may write the index as

p _ _
J — V tr f C*Tfi v /_\ vT/\ ) /Q\j — / j ii\\^f \^<(J\({T)AI \j)\ \y)

7 = 1

The discrete controllability grammian is
P-I p-\ _

Wc(p)= £ A'BB^A7)^ £ X(r+\)XT(T+l) (10)
T=0 T=0

where the second equality is a consequence of Eq. (6). The
grammian is a real symmetric non-negative definite matrix.
The argument p is used to stress the fact that it is a function of
the number of sample points. Using r for states to be retained
and t for states to be truncated, the grammian written in
partition form is

I wrr wrtrr
r

where
p-\

« = £ Xt(T+l)X?(T+l)

(ID

(12)

By substituting Eq. (12) into Eq. (9), one may express the
truncation criterion in terms of the controllability gram-
mian as

(13)

This criterion gives a measure of the truncation error when
neglecting certain states and the system has been excited using
pulses. The criterion can be shown to be identical if the perfor-
mance measure is taken as the expected value of the truncated
states output using white noise sequences as input to the
system.

Truncation Criterion in the Frequency Domain
Truncation of states based on Eq. (3) or Eq. (13) minimizes

the square error difference between the truncated and original
system over a time window of p samples. The resulting trun-
cated model will contain information over a broad frequency
spectrum. A common practice for the experienced control
engineer is to restrict the control actions to a certain frequency
range. The range is often determined by existing hardware
limitations and/or system requirements. If the frequency band
is known the truncated model used should include this infor-
mation. The following is a modification of the preceding
section for those purposes. Using the definition of the discrete

Fourier transform9 (DFT) (included here for completeness),
one has

DFT{*(/)) = xd(k) = AT% x(T)Z(k)-T (14)

and the corresponding inverse transform is
P-\

(15)

where AT is the sample time, Af=\/(pAT), and Z(k) =
Qxp(j2irk/p) (the subscript d denotes transform and j =
V- 1). Using these definitions, one can write the truncated
output in the following form:

F,(/) = 4/"£ F,.,(T)Z(iy (16)
7 = 0

Substitution of Eq. (16) into Eq. (8) yields

J = tr f £ V (17)

where ()* corresponds to the conjugate transpose. By noting

1 / 7 - 1

P r = 0
(18)

the summation in Eq. (17) is no longer a function of the index
k, and the simplified expression is

(19)-
J=pAf2tr\ £ Yftd(r)Yttd(r)

Equation (19) gives the error criterion in terms of components
of the DFT. The summation is over all the spectral compo-
nents. To write Eq. (19) in terms of the controllability gram-
mian, the expression for the grammian in Eq. (10) must be
transformed using the definitions in Eqs. (14) and (15).

First, the transform of the sequence A1 is given by
P-\

D¥T(Al) = AT £ A *Z(k) ~r = ATA(k) (20)

with

A(k) s Z(k)[Z(k)I - - Z-p(k)Ap] (21)

Using Eqs. (20) and (21), the pulse response matrix can be
transformed to yield

DFT (AX/)} - Xd(k) = ATA(k)B

and its inverse transform is

X(k) = -P£ Zk(r)A(r)B
P r = 0

Using Eq. (23) in Eq. (10) results in

I P-\
wc(p}= - £

P r = 0

(22)

(23)

(24)

which is an expression for the grammian in terms of a summa-
tion of spectral components of the system. Using Eq. (24) and
(22), an equivalent expression for Eq. (24) is

(25)

Using Eq. (19) and the partition of Wc(p) corresponding to
the truncated states, the truncation criterion can be written

2pAT2 tr j £ CfCJCd(T)X*d (r) = tr { C (26)
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Although the preceding truncation criterion seems identical to
that in Eq. (13), the summation is over all of the spectral
components instead of sample time points. The question of
model reduction for a particular frequency range can now be
addressed. Suppose that a frequency range is given; then only
the corresponding spectral components in the range should be
included in performance index in Eq. (26).

Model Reduction in Balanced Coordinates
In the preceding sections a criterion has been presented to

guide the truncation of states that contribute least to the
system pulse response. Using this criterion, there is still the
question of how to optimize the performance index to obtain
minimum truncation error. A very efficient way to look at this
problem was initially discussed in Ref. 3. The basic idea is to
transform the system using proper similarity transformations
to a form that would ease the minimization of the truncation
error. Transformation of the system into a balanced form
renders the controllability and observability grammians equal
and diagonal. A brief discussion of the procedure follows.

Given the discrete controllability and observability grammi-
ans as solutions of

AWc(p)AT-Wc(p + \)= -BBT

A TW0(p)A - W0(p + 1) = - CTC
(27)

the resulting grammians can be decomposed (using Cholesky
decomposition) into

(28)

Next, the matrix H = QP is formed. Decomposing H using
singular value decomposition gives

H=VT2UT (29)

where VTV = 1, UTU = 7, and F is a positive definite diagonal
matrix. Defining the transformation matrix

(30)

the balanced form is obtained as

Ab=R 1AR, Bb=R 1B, — CR (31)

where in this balanced form the observability and controllabil-
ity grammians can be shown to be Wcb = Wob=T2. This bal-
anced form permits minimization of Eq. (26) by truncating
states corresponding to small diagonal elements of the matrix
C*C/F2. Each diagonal term in this expression gives the
penalty associated with truncating that particular state.

Frequency-Weighted Grammians for
Discrete Time Systems

In the definition of the truncation criterion in the frequency
domain, the discrete Fourier transform is used to express the
index and the grammian in terms of a summation over all
spectral components. If a particular frequency range is of
interest, the grammian computation must be modified to in-
clude only the spectral components in the range. The resulting
grammians, which are frequency weighted, can then be used to
balance the system. In the following, expressions for the fre-
quency-weighted grammians are developed.

Previously the discrete controllability grammian was ex-
pressed as

I P-\
wc(p)= - £

P T = 0

(32)

and similarly the observability grammian is
P-I

P 7 = 0

A*(r)C*CA(r) (33)

where A(/) is defined in Eq. (21). The summation is over all of
the frequencies up to the Nyquist frequency fn = I/(2AT).
The preceding expressions converge to a steady-state value in
the limit as p —> oo. The limit exists provided that the eigenval-
ues of A are all within the unit circle, i.e., the system is
asymptotically stable. Taking the limit of Eqs. (32) and (33)
and dropping terms corresponding to Ap, the steady-state
grammians are

(34)

WC(Q)= lim - £ ¥(/)£!?*¥*(/)

= lim - D
p-<x>(j> 1 = 0

where the argument 0, although not needed for the moment,
is there to suggest a particular frequency range and
V(l) = [Z(l)I-A]~l. The steady-state discrete Lyapunov
equations can be converted with the aid of the matrix
A(/) = [Z(l)I + A] to

(35)

The preceding equations are satisfied for all values of k.
Substitution of Eq. (35) into Eq. (34) yields

= Wc <

where the matrix 0(12) is defined by

l p ~ l
0(0) = li

(36)

(37)

One may recall the definition for Z(/) = Qxp(j2irl/p). Now
define 6l = 2irl/p and A0 = 2ir/p, and then substitute the re-
sult into Eq. (37) to get

<KO) = lim -A) A )A0

The preceding equation is the definition of the integral

47T
-A) + A ) d<9

(38)

(39)

Replacing the integration variable using £ = eje, Eq. (39) can
be expressed as an integral around a closed contour as follows:

4ir
(4o>

1 * 1 = 1

To evaluate the integral, it is assumed that there are no singu-
larities on the unit circle. This is consistent with the assump-
tion that the system is asymptotically stable. As a verification
of Eqs. (40) and (36) the integrand can be expanded in its
Laurent series and solved using the residue theorem. Integra-
tion around a closed contour yields 0(0) = Vil. When this
result is substituted in Eq. (36), it corresponds to no frequency
weighting. To examine the result for Eq. (40) when integrated
over a sector, the solution is expressed as

2 log«/ - (41)
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Fig. 1 Integration limits for various frequency ranges.

where s refers to a sector of the unit circle. The sector over
which the integration takes place depends on the frequency
range of interest. Integration around the unit circle corre-
sponds to a frequency sweep from 0 tofn .To aid the evalua-

A -

B =

0.7605 0.2394
0.0024 0.9971
0.0000 0.0005

-45.8560 45.8286
0.4582 - 0.5580
0.0002 0.0995

0.0005 0.0000
0.0000 0.0000
0.0000 0.0000
0.0918 0.0001
0.0001 0.0010
0.0010 0.0000

c

tion of Eq. (41) over a particular range [/i,/2], the correspon-
dence between the sector and frequency is shown in Fig. (1).

The top sector is specified by |£| = 1 and #i<arg(£)<02.
Because of the symmetry of the discrete Fourier transform,
integration from TT to 2ir corresponds to negative frequencies.
Therefore, the contribution to the integral for any sector in the
upper section has a complex conjugate contribution from the
lower sector that should be added.

Once the frequency range of interest is specified, the matrix
in Eq. (41) is evaluated and the frequency-weighted grammian
is obtained using Eq. (36). Balancing the system in Eq. (1) by
using the transformation defined in Eq. (30) produces a diago-
nal frequency-weighted grammian that, when used in conjunc-
tion with Eq. (26), reveals the states to be truncated with the
least error.

Numerical Results
To illustrate the model reduction procedure developed, a

sixth-order discrete time system is used. The discrete-time
system matrices are given by

0.0000 0.0092
0.0005 0.0000
0.9945 0.0000
0.0082 0.7582
0.0994 0.0024
1.0976 0.0000

0.0008 0.0000
0.0100 0.0000
0.0000 0.0100
0.2417 0.0001
0.9966 0.0010
0.0010 0.9940

(42)

1.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00

The discrete eigenvalues are z/ = [0.7569±0.6515/, 0.9994±0.0299/, 0.9941 ±0.105H}. Using a sample time of 0.01 s, the corre-
sponding eigenvalues for the continuous time system are X7 = { - 0.129 ±71.07/, -0.020±2.988/, -0.032±10.53/). The model
reduction problem as posed in Eq. (3) is to truncate the states with the smallest contribution to the performance criterion. If Eq. (19)
is used, the states truncated are those that contribute the least in a particular frequency band. Assume that the controller design
bandwidth is from 0 to 1 Hz. The first step, for model reduction, is to obtain the discrete frequency-weighted grammians in Eq. (36)
using Eq. (41). These frequency-weighted grammians are used in Eqs. (21-28) to obtain a balanced system whose frequency-
weighted grammians are equal and diagonal. The resulting balanced system matrices are

A =

0.9993
- 0.0299
- 0.0004
- 0.0004
0.0000
0.0000

0.0299
0.9994

- 0.0004
- 0.0002
0.0000
0.0000

- 0.0004
0.0004
0.7573

-0.6515
0.0001
0.0001

0.0004
- 0.0002
0.6515
0.7565
0.0005
0.0003

- 0.0001
0.0001

- 0.0001
0.0003
0.9941

-0.1051

0.0000
0.0000
0.0000

- 0.0002
0.1051
0.9942

0.0139
0.0136
0.0303
0.0211

- 0.0025
- 0.0023

0.0126"
0.0124

- 0.0003
- 0.0002
0.0003
0.0002

[0.0133c -
[0.0132

(43)

-0.0130 0.0303 -0.0211 0.0018 -0.0017
-0.0130 -0.0003 0.0002 0.0018 -0.0016
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Fig. 2 Comparison of original and reduced-order model frequency
response functions using first input; desired range 0-1 Hz.

Fig. 3 Comparison of original and reduced-order model frequency
response functions using first input; desired range 5-50 Hz.

It is interesting to note that the balanced system is almost block diagonal. Intuitively, a block diagonal form is the most amenable
form for truncation because the off-diagonal terms are zero, i.e., truncated states do not affect the retained states. The truncation
criterion is diag(QrQF2) = 0.001 [0.91, 0.87, 0.49, 0.23, 0.0002, 0.0001). Since the eigenvalues of the system occur in pairs, the
first two states of the system were retained for a performance error of 0.72. The transfer function for the discrete time system is
shown in Fig. 2. The dashed line corresponds to the reduced-order model (containing only two states), and the solid line is the
original system. Elimination of the highest frequency mode accounts for most of the truncation error. Examining the original
transfer matrix, one observes that the truncated mode has a significant contribution to the total response even though it is outside
the range of interest.

The second example shows the case when the frequency range of interest is from 5 to 50 Hz. The selection of the range is
completely arbitrary but is selected to illustrate the procedure. The system in Eq. (42) is balanced accordingly, and the resulting
matrices are

A =

0.7577

0.6515
0.0001
0.0001
0.0000
0.0000

0.6515
0.7561
0.0004
0.0000
0.0000
0.0000

0.0001
0.0004
0.7285
0.2719
0.0003
0.0003

0.0001
0.0000
0.2719
1.2708
0.0006
0.0006

0.0000
0.0000

- 0.0102
0.0248
1.0070
0.0208

0.0000
0.0000

-0.0119
- 0.0209
-0.5614
0.9807

(44)

B =

0.0303
0.0211
0.0026
0.0034
0.0000
0.0002

- 0.0003
0.0002
0.0026

- 0.0034
0.0001

- 0.0002

c = 0.0211 -0.0026 -0.0034 -0.0002 O.OOOll

0.0003 0.0001J

0.0303

-0.0003 -0.0002 -0.0026 -0.0034 -i

The performance index is given by diag(C/C,r2) = 0.001 (0.24, 0.12, 0.00, 0.00, 0.00, 0.00}. Retention of the first two states yields
an error performance at least two orders of magnitude smaller than the truncated states. Figure 3 shows the corresponding transfer
function for the reduced-order model. Excellent matching of the high-frequency magnitude and phase is obtained for both outputs.
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Conclusions
The paper presents an extension of a model reduction tech-

nique to treat discrete time systems directly. The procedure
uses frequency-weighted grammians to determine appropriate
balancing transformations. Balancing is used to transform the
system into a form amenable for state truncation. Truncation
is performed by minimizing the error between the pulse re-
sponses from the original and the reduced-order system.
Closed-form solutions for the discrete frequency-weighted
grammians are developed, and the procedure is demonstrated
using a simple sixth-order system. Excellent matching of the
transfer function is illustrated for different frequency ranges.
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